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Abstract

Weak memory models for concurrent programming lan-
guages are expected to admit standard compiler optimiza-
tions. However, prior works on verifying optimizations in
weakmemorymodels are mostly focused on simple optimiza-
tions on small code snippets which satisfy certain syntactic
requirements. It receives less attention whether weak mem-
ory models can admit real-world optimization algorithms
based on program analyses.

In this paper, we develop the first simulation technique for
verifying thread-local analyses-based optimizations in the
promising semantics PS2.1, which is a weak memory model
recently proposed for C/C++11 concurrency. Our simula-
tion is based on a novel non-preemptive semantics, which is
equivalent to the original PS2.1 but has less non-determinism.
We apply our simulation to verify four optimizations in PS2.1:
constant propagation, dead code elimination, common subex-
pression elimination and loop invariant code motion.
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1 Introduction

The design of weak memory models of concurrent program-
ming languages should balance the conflicting demands of
hardware, programmers, and compilers. The promising se-
mantics (PS) [10, 13] is recently proposed for trying to sat-
isfy all the demands as an operational weak memory model
for C11-like languages. It has been shown that PS is imple-
mentable for mainstream hardware platforms (e.g. x86-TSO
and Power), and also friendly for programmers as it pro-
vides DRF guarantees and avoids the bad łout-of-thin-airž
behaviors. In this paper, we focus on the demands of compil-
ers: does PS admit compiler optimizations, especially those
already used heavily in existing compilers?
In particular, we are curious about whether PS allows

thread-local analyses-based optimizations. They are commonly
found in mainstream C compilers (e.g. GCC and LLVM), but
rarely studied in existing works on weak memory models.
Most existing works only study whether it is sound to do
optimizations on code snippets (e.g. [3, 16, 22, 23]). These
optimizations can eliminate redundant reads and writes and
reorder independent instructions, but usually require the
source code snippet to conform to a certain syntactic łshapež,
e.g. the first write can be eliminated for two adjacent writes
to the same location in the same access mode. By contrast,
analyses-based optimizations are more complex, since their
transformations are based on the results of program analysis
algorithms, which usually depend on program behaviors. For
instance, dead code elimination (DCE) eliminates a write to a
location if the value of that location is not used later in any ex-
ecution of the program. It can eliminate not only redundant
writes, but also those that are found dead in semantics. For
PS, people have shown that it admits thread-local optimiza-
tions on code snippets [10] and some global optimizations
such as register promotion [13], but what about thread-local
analyses-based optimizations such as DCE?
Unfortunately the answer is not obvious at all. Consider

the optimization of loop invariant code motion (LICM) as an
example, which will move loop invariants (e.g. a read of a
variable that gives the same value in every iteration) out of
the loop body. A naive adaption of LICM to PS can transform
foo() to foo_opt() in Fig. 1, by ignoring the subscripts (e.g.
acq and na) annotated for weak semantics.We call foo() and
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1 int foo() {

2 int r1 := 0, r2 := 0;

3 while(r1 < 10) {

4 while(xacq == 0);

5 r2 := yna;

6 r1 := r1 + 1;

7 }

8 return r2;

9 }

1′ int foo_opt() {

2′ int r1 := 0, r2 := 0;

3′ r2 := yna;

4′ while(r1 < 10) {

5′ while(xacq == 0);

6′ r1 := r1 + 1;

7′ }

8′ return r2;

9′ }

Figure 1. Example of loop invariant code motion.

foo_opt() the source and the target of the transformation
respectively. Here x and y are global variables. The read of y
inside the loop body in the source code (line 5) is moved out
of the loop in the target (line 3′).

Soundness of a transformation is defined by the refinement:
the target does not produce more behaviors than the source.
We find that Fig. 1 is unsound in PS (and in the standard
C/C++11 model). To see why, suppose x and y are initialized
to 0, and another thread runs g() in parallel:

void g(){ yna := 1; xrel := 1; }

Then r2 in foo_opt() may see y’s initial value 0 as well
as the new value 1, but r2 in foo() can only read 1 due to
the release-acquire synchronization. Thus foo_opt() ∥ g()

does not refine foo() ∥ g() in PS.
That said, we don’t want to conclude from Fig. 1 that LICM

is unsound in PS. Instead, we want to verify that, with careful
adaptions, LICM and other well-known sequential optimiza-
tions are all sound in PS. For Fig. 1, the transformation will
become sound if we change the acquire reads to relaxed reads
(at line 4 in foo() and line 5′ in foo_opt()). Consequently,
we are more convinced that PS does admit LICM, where loop
invariants can be moved around carefully chosen atomic
accesses. The only question is, how to formally verify it.

Note that as we expect PS to admit optimization passes or
optimization algorithms (such as LICM), it is insufficient if
we only show the correctness of transformation of particular
programs. Instead we should prove the transformation cor-
rectness (i.e. refinement) on arbitrary reasonable programs.
For this, the standard proof technique is to build simu-

lations. The simulation should be compositional (a.k.a. con-
gruent) in that it is preserved by the language constructs
such as sequential composition, branches, loops and parallel
composition. Then, by induction on the program structure of
the source, we can prove simulations for all pairs of source
and target programs. Since simulation ensures refinement,
we can conclude the correctness of an optimization.

Simulations (including the one in CompCert) can easily en-
sure compositionality w.r.t. sequential language constructs.
So, the main challenge we face is, how to design a thread-
local simulation that has both parallel compositionality (a.k.a.
horizontal compositionality) in PS and applicability for vari-
ous optimizations. Our starting point is the simulation with

an invariant parameter [8, 14, 21], a key proof technique to

achieve parallel compositionality in the sequentially consis-
tent (SC) semantics. The invariant parameter provides an
abstraction for the interference between the current thread
and others, but for PS, it may have to expose many complex
details of the weak semantics. Consequently, verifiers may
find it quite hard to instantiate the invariant. To simplify
the invariant, our ideas are, 1) introducing a non-preemptive
semantics, to reduce the program points where interference
occurs; and 2) assuming that source programs are free of
write-write races, to reduce what interference can occur.

In this paper, we present the first simulation technique
which is parallel compositional and applicable for verifying
thread-local analyses-based optimizations in PS2.1 [5, 13],
the up-to-date version of the promising semantics. We sup-
port all the language features supported by PS2.1, which are
all features of C11 concurrency except consume reads and
SC accesses. Also, we focus on optimizations on non-atomic

accesses (i.e. those annotated with na). These optimizations
modify non-atomic accesses only, but it is possible to move
non-atomic accesses around atomic ones (like Fig. 1) or use
knowledge from other parts of code across atomic accesses.
We do not consider optimizations on atomic accesses, as they
are rarely found in mainstream C compilers such as GCC
and LLVM. We make the following new contributions:
First, we show that PS2.1 is equivalent to a non-preemptive

semantics where context switch and promise/reserve steps
are forbidden inside the execution of code blocks consist-
ing of non-atomic accesses only. The non-preemptive se-
mantics is interesting in its own right, since it reduces non-
determinism, making it potentially easier to reason about
program behaviors in the promising semantics.
Second, we formulate write-write race freedom in PS2.1.

Intuitively a write-write race means that two threads both
(non-atomically) write to the same location, and neitherwrite
happens before the other. Assuming write-write race free-
dom of source programs allows verifiers to easily instantiate
the invariant in simulations, without concerning much about
the details of PS (e.g. how promises are certified). Note that
we allow the source to have read-write races, as some sound
optimizations (e.g. LICM) do introduce read-write races.
Third, based on the non-preemptive semantics, we pro-

pose a thread-local simulation for verifying optimizations.
Our simulation is compositional w.r.t. parallel composition,
as long as the source program is free of write-write races. It
is parameterized with an invariant specifying the possible
interference from environment (i.e. other threads). In compli-
ance with the non-preemptive semantics, the environment
interference occurs only outside of the current thread’s exe-
cution of non-atomic accesses, which makes it easy to verify
transformations that reorder non-atomic accesses.
Fourth,we have applied our simulation to verify four opti-

mization algorithms, including constant propagation (Const-
Prop), dead code elimination (DCE), common subexpression
elimination (CSE) and loop invariant code motion (LICM).
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The four optimizations are, for the first time, adapted to
PS2.1. In particular, we carefully allow optimizations across
certain atomic accesses, e.g. LICM is allowed across a relaxed
read/write or a release write, but not an acquire read; and
DCE is allowed across a relaxed read/write or an acquire
read, but not a release write.
Finally,we prove the adequacy of our verificationmethod

(i.e. the simulation), saying that it ensures optimization cor-
rectness for write-write race-free source programs. We have
mechanized the proofs of the verification framework in the
Coq proof assistant. The Coq mechanization of the proofs of
the optimization algorithms is still in progress.
In the rest of this paper, we first explain our main ideas

for verifying optimizations in PS in Sec. 2, and review the
promising semantics in Sec. 3. Then we present the equiv-
alent non-preemptive semantics in Sec. 4, and formulate
write-write race freedom in Sec. 5. We propose our thread-
local simulation and the final theorem in Sec. 6, introduce
the verified optimizations in Sec. 7, and discuss related work
in Sec. 8. Supplementary materials for this paper, including
the appendix and the Coq development, are available at [25].

2 Informal Development

We quickly review, in Sec. 2.1, the main ideas of PS; and in
Sec. 2.2, the idea of parameterizing simulation with invari-
ant to ensure parallel compositionality in the SC semantics.
Then we introduce the key challenges and our basic ideas in
developing simulations for verifying optimizations in PS. In
Sec. 2.3 and 2.4, we motivate the non-preemptive semantics
and write-write race freedom, respectively. We discuss why
we allow read-write races in Sec. 2.5, and give an overview
of our verification framework in Sec. 2.6.

2.1 The Promising Semantics: An Overview

The promising semantics (PS) introduces several key ideas to
model the out of order execution in C11-like memory models.
It keeps the whole history of memory updates by recording
all writes as time-stamped messages in the memory, so that
a read may see more than one prior writes. In particular,
a read needs not read the łlatestž write. This allows the
following annotated outcome for the store buffering example
(SB). (Throughout the paper, we call the left thread t1 and
the right t2, and assume all the variables are initialized to 0.)

xrlx := 1; yrlx := 1;

r1 := yrlx; // 0 r2 := xrlx; // 0
(SB)

PS also allows a thread to promise a write at any time
without actually executing the write command. Like regular
writes, the promised writes can be read by other threads.
This allows the load buffering example (LB):

r1 := xrlx; // 1 r2 := yrlx; // 1

yrlx := 1; xrlx := r2;
(LB)

The following execution gives us the annotated outcome.
We let t1 first promise to write y, and let t2 read from the

Ps P′s

Pt P′
t

≽ ≽

*

(a) Ps ≽ Pt

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

≽ ≽ I ≽I ≽

* *

(b) I ⊢ (πs , f) ≽ (πt , f)

Figure 2. Simulations, without and within environment.

promised write. At the end t1 fulfills its promise by executing
the actual write instruction.

[t1 : promise (yrlx := 1); t2 : r2 := yrlx //1; t2 : xrlx := r2;

t1 : r1 := xrlx //1; t1 : yrlx := 1 (fulfill)].

A thread can only promise to write if it can thread-locally

certify that its promise will be fulfilled by itself. This avoids
the łout-of-thin-airž reads. For (LB), if we change t1’s write
to yrlx := r1, the outcome 1 would be łout-of-thin-airž. It is
disallowed in PS, because t1 cannot promise yrlx := 1, as it is
not able to fulfill the promise when running in isolation.
Moreover, PS requires the promise to be certified at the

capped memory, a special extension of the current memory.
Certifying promises only from the current memory is insuffi-
cient, because it completely ignores the possible interference
by other threads, which could make the current thread un-
able to fulfill its promises. In particular, when two threads t
and t′ perform compare-and-swap (CAS) operations reading
from the same write, the current thread t should not make a
promise by assuming that its CAS will succeed, since t′ may
succeed first in the actual execution. The construction of
the capped memory models the environment interference
(e.g. the successful CAS performed by t′). More technically, it
reserves all the timestamps falling between the timestamps
of existing writes, together with the timestamp next to the
greatest assigned one (i.e. a cap), so that the current thread
can no longer assign them to its future writes.
We will review PS in more detail in Sec. 3.

2.2 Simulation and Parallel Compositionality

We write a concurrent source program Ps in the form of
let πs in f1 ∥ . . . ∥ fn , consisting of declarations πs for a set
of functions and n threads calling the functions f1, . . . , fn in
πs . An optimization pass Opt transforms πs to the target πt .
So the target program Pt is let πt in f1 ∥ . . . ∥ fn . In general,
verifying Opt requires one to verify the refinement Ps ⊇ Pt ,
saying that every observable event trace generated by the
execution of Pt can also be generated by the execution of Ps .

Simulation for refinement proofs. To prove Ps ⊇ Pt ,
the standard approach is to construct an (upward) simulation
relation Ps ≽ Pt , depicted in Fig. 2(a). It requires that any
step of Pt should correspond to zero-or-more steps of Ps
such that the simulation ≽ still holds between the resulting
source and target programs P′s and P

′
t
.

This approach is used in CompCert for verifying compila-
tion of sequential programs. But the simulation relates whole
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◦ ◦ ◦

◦ ◦ ◦

R(x) W (y)

W (y) R(x)

(a) lockstep

◦ ◦ ◦

◦ ◦ ◦

R(x) W (y)

W (y) R(x)

I

(b) stutter

◦ ◦ ◦ ◦

◦ ◦ ◦

prm R(x) W (y)

W (y) R(x)

(c) promise

Figure 3. Simulations for (Reorder). We write R(x),W (y)

and prm for r := xna, yna := 2 and promise, respectively. The
target execution is at the bottom, while source is at the top.

programs only, and it is not parallel compositional. That is,
one cannot derive Ps ≽ Pt from∀i . let πs in fi ≽ let πt in fi
(i.e. the simulation between individual threads). The reason
is that the simulation does not take into account the interac-
tions with environment (i.e. the other threads) which may
update the shared resource.

Invariant for parallel compositionality. Prior works
have developed thread-local simulations which are parallel
compositional in the SC semantics [8, 14, 21]. The simula-
tions are established for individual threads, without relying
on the code of other threads. The behaviors of the other
threads are abstracted as a rely condition, an invariant over
environment state transitions. As shown in Fig. 2(b), the
thread-local simulation I ⊢ (πs , f) ≽ (πt , f) is parameterized
with the invariant I relating source and target shared states,
which is required to hold at every switch point. That is, the
current thread’s transitions (the thin arrows) must ensure I
when switching out, and the environment transitions (the
thick arrows) must give back I when switching back. Such
a simulation is compositional in the SC semantics: one can
derive Ps ≽ Pt from ∀i . I ⊢ (πs , fi ) ≽ (πt , fi ).

However, this invariant approach does not directly extend
to PS. For the approach to work, since I specifies the inter-
ference at switch points, one needs to first figure out where
the switch points are and what the interference is. In PS, the
answers to these two questions are not obvious, as apparent
answers would make it hard to instantiate I .

2.3 The Need of Non-Preemptive Semantics

Let’s consider the first question: where is a switch point? In
PS, threads execute in an interleaved fashion, so it seems
natural to treat every program point as a possible switch
point. Consequently, the invariant I in the simulation has to
be weak enough to hold at every step.

For example, consider how to build the simulation for the
instruction reordering transformation (Reorder):

r := xna; yna := 2; ; yna := 2; r := xna; (Reorder)

Figure 3 lists three typical ways to relate the source and
target executions. However, none of them is good enough.
In Fig. 3(a), we let the first target step correspond to the

read step of the source. Then we will have to decide which

value the source should read, before the same read is per-
formed at the target. On the one hand, the simulation re-
quires that the read values be the same at the two sides. On
the other hand, we cannot predict the read value of a future
target step since the read value can be non-deterministic in
PS. As such, we are unable to pick a łcorrectž read value for
the source, so we cannot build the simulation in Fig. 3(a).
Similarly, it is also infeasible if we let the first target step
correspond to the source executing both R(x) andW (y).

In Fig. 3(b), the first target stepW (y) corresponds to zero
source step. Since the point after the first target step is a
switch point, the invariant I should hold (as explicitly la-
beled in the figure). So, I has to allow the target memory
to contain more writes of y than the source. Considering
the environment interference which may possibly write to
x, it seems that I needs to be weaker, allowing the target
memory to also contain more writes of x! Consequently, the
next target step R(x) may read a value not possible by the
source, breaking this simulation.

Onemay think that the break of Fig. 3(b) is caused by races,
as we allow the environment to write x when the current
thread reads x. However, (Reorder) is actually sound in PS for
any programs including racy ones, because we can construct
the simulation in Fig. 3(c). For the first target stepW (y), we
let the source thread promise to write y. Then we can have a
strong I saying that the target and source memories are the
same. Then the next R(x) steps at the two sides can read the
same value. The simulation in Fig. 3(c) works well for the
simple example (Reorder), but it is not easy to use for more
general reordering transformations such as

r := xna;C; yna := 2; ; yna := 2;C; r := xna;

Here the code C does not involve x, y or r , but it can be arbi-
trarily complex, making it non-trivial to certify the promise
of the source thread.

Non-preemptive semantics to simplify invariant. Let
us step back to the simulation in Fig. 3(b). We want to argue
that its key problem is that too many switch points make
I too weak. To address the problem, we build simulations
over non-preemptive semantics which has much less switch
points than the interleaving semantics. In particular, non-
preemptive semantics forbids context switch inside the exe-
cution of code blocks consisting of only non-atomic accesses.
Thus, for (Reorder), the program point after the first target
step is not a switch point in the non-preemptive semantics.
As such, we can use the simple I (the same one for Fig. 3(c))
saying that the source and target memories are always the
same at every switch point (in this example, the only switch
points are before and after the whole code segment).

The remaining question is, can we really verify refinement
in interleaving semantics by building simulations in non-
preemptive semantics? The prior work CASCompCert [8]
shows that this proof path is sound for SC semantics and for

data-race-free programs, because for them the interleaving
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1 r1 := yrlx;

2 if (r1 == 1) zna := 1;

3 else xrlx := 1;

4 r2 := xrlx;

5 if (r2 == 1) {

6 zna := 2; yrlx := 1; }

Figure 4. Does the program have a write-write race?

semantics is equivalent to the non-preemptive semantics. In
this work, we adopt similar ideas in the setting of PS2.1. We
design a non-preemptive version for PS2.1 and prove that
the equivalence between the two semantics unconditionally
holds for any programs. We will explain the details in Sec. 4.

2.4 The Need of Write-Write Race Freedom

Let’s consider the second question: what is the interference?
In PS, there are two sources of interference: one is the be-
haviors of the other threads running in parallel, as in any
concurrency semantics; and the other is the construction of
the capped memory in the current thread’s promise certi-
fication, as explained in Sec. 2.1. Asking the invariant I to
specify both of them would make it difficult to define and
use, because the construction of the capped memory can
be different from the actual behaviors of the other threads.
In particular, to establish the simulation, one can choose a
specific execution strategy for a source thread to correspond
to the target. If we know all the source threads would follow
the same strategy, their behaviors may follow certain pattern
instead of being arbitrary, which can be encoded into I and
simplify the simulation proof. However, I has to be much
weaker (and potentially more complicated) if it also needs
to cover the construction of the capped memory as another
source of interference.

To address this problem, we do not require I to cover the
construction of the capped memory. Instead, we only con-
sider the correctness of optimizations for source programs
that are free of write-write races, based on the observation
that a thread from a write-write-race-free program can cer-
tify promises (for non-atomic writes) against the current
memory instead of the capped memory.

Intuitively a write-write race means that two threads both
(non-atomically) write to the same location, and neitherwrite
happens before the other. So, write-write race freedom for-
bids a thread t to write to a location when the memory con-
tains a write of the same location made by another thread t′

and unobserved by t. This gives the same technical effect as
the capped memory: t cannot write a messagem when the
memory already contains another messagem′ at the same
location with a higher timestamp written by t′.

Subtleties in formulating write-write race freedom.

One needs to be careful with the promises when defining
write-write race freedom in PS. For example, one may think
that the program in Fig. 4 has the following execution:

[t1 : promise (xrlx := 1); t2 : r2 := xrlx//1; t2 : zna := 2;

t2 : yrlx := 1; t1 : r1 := yrlx//1; t1 : zna := 1//Race?].

while(r1 < 8){

r2 := xna;

r1 := r1 + 1;

}

(denoted by Csrc)

LInv
;

r := xna;

while(r1 < 8){

r2 := xna;

r1 := r1 + 1;

}

(denoted by Cm)

CSE
;

r := xna;

while(r1 < 8){

r2 := r ;

r1 := r1 + 1;

}

(denoted by Ctgt)

(a) LICM first performs LInv, and then CSE

r0 := yacq;

if(r0 == 1) {

r1 := zna;

Csrc;

}

LInv
;

r0 := yacq;

if(r0 == 1) {

r1 := zna;

Cm;

}

g() {

zna := 9;

yrel := 1;

xna := 5;

}

(b) LInv may introduce read-write races

Figure 5. More examples of LICM.

From this execution, one would think that a write-write
race on z occurs, because t1 and t2’s writes to z are not
synchronized. However, after t1 reads 1 from y at line 1, its
earlier promise would never be fulfilled, so this execution
should not be considered legal.
It seems more natural to not view that this program has

a write-write race. Here t1 writes to z only when r1 sees 1;
while t2 writes to z only when r2 obtains 1, which means r1
of t1 must see 0. As such, the two threads never write to z in
the same execution, so there is no write-write race.
To reflect the intuition, we carefully define write-write

race freedom by checking races only when promises are certi-

fied. By our definition (presented in Sec. 5), the program in
Fig. 4 does not have a write-write race.

2.5 Allowing Read-Write Races

Unlike write-write races, we allow the source programs to
have read-write races. This is crucial for supporting opti-
mizations performing redundant read introduction, which
can introduce read-write races.
A typical example is loop invariant code motion (LICM).

It is implemented by composing two optimization passes:
LICM ≜ (LInv ◦ CSE), where ◦ denotes the composition
of two optimizers (called łvertical compositionž). The first
pass LInv detects the loop invariant and allocates a fresh
register at the entry of the loop to save the value of the loop
invariant. This pass can introduce redundant memory reads.
The second pass is common subexpression elimination (CSE)
which eliminates the evaluation of loop invariant inside the
loop body. In Fig. 5(a), in the source code Csrc, x is a loop
invariant. LInv introduces a redundant read r := xna before
the loop. Next, CSE keeps r := xna and replaces the read of
x in the loop body with a read of r . So in the target Ctgt, we
have moved the read of x out of the loop.
LInv, the first pass of LICM, may introduce read-write races,

as shown in the example of Fig. 5(b). Here the code snippets
Csrc and Cm in the source and target code are those presented
in Fig. 5(a). There is no race if one thread t1 runs the source
code and another thread t2 runs g() in parallel, because the
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Verif(Opt) ∧ Opt(πs ) = πt ww-RF(Ps )

I ⊢ (πs , f) ≽ (πt , f), for any f

2○

ww-NPRF(P̂s )

1○

P̂s ⩾ P̂t ∧ ww-NPRF(P̂t )

3○

P̂s ⊇ P̂t

4○

ww-RF(Pt )

1○

⊇

⊇

Ps ⊇ Pt

5○5○

Figure 6.Our proof path. Here Ps = (let πs in f1 ∥ . . . ∥ fn),
Pt = (let πt in f1 ∥ . . . ∥ fn), P̂s = (let πs in f1 | . . . | fn)

and P̂t = (let πt in f1 | . . . | fn).

acquire-release synchronization on y ensures that r1 must
read 9, so t1 does not enter the loop to access x. But, if t1
runs the target code, since x is read outside of the loop in Cm,
there is a race between t1’s read and t2’s write of x. Since the
resulting code with read-write races might become the input
source code for subsequent optimization passes (e.g. CSE, in
the case of LICM), we decide to not assume the absence of
read-write races in the source.

Note that introduction of redundant reads is sound in PS,
even in the presence of read-write races. Although duplicated
reads may see different values with read-write races, this is
fine since only one of the read values is used (i.e. other reads
are redundant). We have verified LInv in PS2.1 (in fact, our
proof for LICM is composed from those for LInv and CSE).

2.6 Our Proof Path

Figure 6 shows our proof path for the adequacy of our verifi-
cation method, i.e. how we reduce the problem of verifying
optimization passes to verifying thread-local simulations in
non-preemptive semantics.
As we explained, verifying an optimization pass Opt re-

quires us to verify the refinement Ps ⊇ Pt in PS2.1, for any
source and target pairs Ps and Pt , as long as Ps is free of
write-write races (i.e. ww-RF(Ps ) holds). In Fig. 6, we reduce
the goal Ps ⊇ Pt to P̂s ⊇ P̂t , where P̂ denotes the program
in our non-preemptive semantics, using the equivalence be-
tween our non-preemptive semantics and PS2.1 (see 5 ). We
also show that ww-RF(P) is equivalent to ww-NPRF(P̂) (see
1 ) where ww-NPRF is the counterpart of ww-RF in the non-
preemptive semantics. The correctness Verif(Opt) ensures
the thread-local simulation, I ⊢ (πs , f) ≽ (πt , f), for any
function f (see 2 ). Here the invariant I can be instantiated
differently when verifying different optimizations. The sim-
ulation is compositional (see 3 ) and the resulting whole-
program simulation P̂s ⩾ P̂t ensures the refinement in our
non-preemptive semantics (see 4 ). Our verification method

(Lab) f ∈ N (Val) v ∈ Int32

(Reg) r ::= . . . (Var) x, y, z ::= . . . (Atms) ι ⊆ Var

(ModeR) or ::= na | rlx | acq (ModeW) ow ::= na | rlx | rel

(Expr) e ::= r | v | e + e | e − e | e ∗ e

(Instr) c ::= r := xor | xow := e | r := CASor ,ow (x, er , ew )

| skip | r := e | print(e)

(BBlock) B ::= c, B | jmp f | be e, f1, f2 | call(f, fret) | return

(Cdhp) C ∈ Lab⇀ BBlock

(Code) π ::= {f1 ; C1, . . . , fk ; Ck }

(Prog) P ::= let (π , ι) in f1 ∥ · · · ∥ fn

Figure 7. Syntax of the CSimpRTL language.

also ensures the preservation of ww-RF (via 1 and 3 ), al-
lowing us to vertically compose verified optimizations.
Since we are concerned about verifying Opt, we need

to prove the thread-local simulations for all source code.
For this, we follow CompCert, which performs induction
on the program structure of the source. We have applied
our verification method Verif(Opt) to four optimization algo-
rithms, including constant propagation (ConstProp), dead
code elimination (DCE), common subexpression elimination
(CSE) and loop invariant code motion (LICM). For LICM, we
verify the two passes LInv and CSE separately, and conclude
the correctness of LICM by transitivity of the refinement.

3 Preliminaries: The Promising Semantics

Figure 7 shows the syntax of our concurrent programming
languageCSimpRTL. A program P consists of n threads, each
calls a function f in π . The code heap C of the function π (f)

maps labels to basic blocks. Each basic block B is a sequence
of instructions ending with a jump (either an unconditional
jump jmp, a conditional jump be, an internal function call
call or a return command).

An instruction c can be read, write, and compare-and-swap
(CAS) operations on variables (memory locations), annotated
with access modes or and/or ow . We support three kinds of
memory accesses on atomic locations: relaxed (rlx), release
writes (rel) and acquire reads (acq). Reads and writes on non-
atomic locations must be in the non-atomic (na) mode. The
CAS instruction can only access an atomic location, and it
carries two access modes, one for the read part and one for
the write part. Besides, we also support fence instructions1,
and local computation (r := e) and print instructions that
involve only registers. We require programmers to explicitly
specify which variables are atomic, using the set ι, which
plays a similar role as the keyword ł_Atomicž for atomic
variable declarations in C11 programs.

1To simplify the presentation, we omit fence operations (including re-
lease/acquire/sc fences) as well as the components in PS2.1 that model
their semantics in the paper. We consider them and the full PS2.1 model in
our supplementary appendix and Coq implementation [25].
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(Time) f , t ∈ Q (Tid) t ∈ N (LocalState) σ ::= . . .

(TimeMap) T ∈ Var → Time (View) V ::= (Tna,Trlx)

(Message) m ::= ⟨x : v@(f , t],V ⟩ | ⟨x : (f , t]⟩

(Mem) M, P ∈ P(Message) (ThrdState) TS ::= (σ ,V , P)

(ThrdPool) TP ∈ Tid → ThrdState

(World) W ::= (TP, t,M)

(ThrdEvt) te ::= τ | out(v) | R(or , x,v) | W(ow , x,v)

| U(or ,ow , x,vr ,vw ) | prm | ccl | rsv

(ProgEvt) pe ::= τ | out(v) | sw

(EvtTrace) B ::= ϵ | done | abort | out(v) :: B

Figure 8. Machine states and events.

The program behaviors are defined following the promis-
ing semantics presented in [5], which we refer to as PS2.1.

Machine states. Figure 8 defines the machine states. The
whole program configurationW consists of the shared mem-
oryM , a thread poolTP containing the local states of threads,
and the thread id t of the current thread.

The global sharedmemoryM keeps all the historical writes,
which are time-stamped messages m in the form of ⟨x :

v@(f , t],V ⟩. The message records the write of x with the
value v . The timestamp interval (f , t] denotes the range of
timestamps from f (exclusive) to t (inclusive). Usually we
use the łtož-timestamp t to identify the messages, but we also
need the łfromž-timestamp f to form the interval, which is
needed to prevent two successful CAS from seeing the same
write, as explained below. The messagem also contains a
message view V to model the synchronization between re-
lease writes and acquire reads, which is also explained in
detail below.We denote the components ofm bym.var,m.val,
m.from,m.to andm.view.

To ensure the coherence of reads, each thread maintains a
viewV as part of its local state TS. It records, for each variable,
the timestamp of the most recent write the thread has seen.
So V contains two time maps Tna and Trlx for non-atomic
reads and relaxed reads, respectively. Each maps variables
to the corresponding timestamps. A thread can only see the
writes whose łtož-timestamp is no less than the timestamp
in its local view. We useT1⊔T2 (and lifted toV1⊔V2) to łjoinž
views (pointwise maximum). We also useT 0 ≜ {x ; 0 | x ∈

Var} and V⊥ ≜ (T 0
,T 0) to represent the bottom time map

and view respectively.
A thread can promise a future write by putting a write

message into its local promise set P in TS and the memoryM .
The promise can be made non-deterministically at any step
and it does not have to correspond directly to any specific
write instruction, but it needs to be fulfilled by the thread in
the future, by executing an actual write instruction. When
fulfilled, the promise is removed from P .

Thread steps and memory operations. We write ι ⊢

(TS,M)
te
−−→ (TS′,M ′) for one thread step. The thread event

te defined in Fig. 8 labels the operation. If te is not an out(v)

event generated by a print instruction, we can omit te from
the transition and view the step silent.
If te = W(ow , x,v), the thread executes xow := e . It ei-

ther fulfills a promise m = ⟨x : v@(f , t],V ⟩ and removes
it from the thread’s promise set TS.P , or generates a new
messagem = ⟨x : v@(f , t],V ⟩ and puts it into memory. The
timestamp interval is non-deterministically chosen. It needs
to be disjoint with the timestamp intervals of other mes-
sages. Also the łtož-timestamp t needs to be strictly larger
than the one recorded for x on the thread’s relaxed view,
that is, TS.V .Trlx(x) < t . Then, the thread updates its view
(both Tna and Trlx in TS.V ) on x, since t becomes its largest
known timestamp. If the write is a release write (ow = rel),
the messagem generated will take the thread’s current view
as the message view (i.e.m.view = TS.V ), so that when an
acquire read of this write takes place, the reading thread can
update its local view by merging it with this message view,
establishing synchronization between the release write and
the acquire read. The non-atomic and relaxed writes are non-
synchronizing memory accesses and the messages generated
by their executions take V⊥ as the message view.

If te = R(or , x,v), the thread performs r := xor . The thread
picks a concrete message ⟨x : v@(f , t],V ⟩ ∈ M to read,
but t must be at least as large as the one recorded for x in
the thread’s view. Namely, TS.V .Tna(x) ≤ t if or = na, or
TS.V .Trlx(x) ≤ t if or ∈ {rlx, acq}. Then the thread updates
its view (both Tna and Trlx in TS.V if or ∈ {rlx, acq}, or just
Trlx if or = na) on x to record the new timestamp t . The
resulting view V ′ is set to the new thread local view for the
non-atomic or relaxed read. For the acquire read, the new
thread local view becomes the join of V ′ and the message
view V , i.e. V ′ ⊔V .

The execution of the atomic update r := CASor ,ow (x, er , ew )

generates the U(or ,ow , x,vr ,vw ) event. It can be viewed as
a combination of a read and a write. For the generated mes-
sage ⟨x : vw@(f , t],V ⟩, the łfromž-timestamp f needs to be
equal to the łtož timestamp of the message from which the
CAS reads. Here we need the interval (f , t] to ensure that
two concurrent CAS cannot both succeed and read the same
write. Consider the following example.

r1 := CAS(x, 0, 1) r2 := CAS(x, 0, 1)

Assume the memory only contains the initial messagem0 =

⟨x : 0@(0, 0], _⟩. The semantics ensures that only one CAS
can succeed. If the CAS of t1 succeeds and generates a new
message ⟨x : 1@(0, t], _⟩. Then the CAS of t2 cannot succeed,
otherwise it would also generate a message with a łfromž-
timestamp of 0, violating the requirement that the timestamp
of all messages must be disjoint.
The promise step generates the prm event. As explained

above, it adds a write messagem into the thread’s promise

909



PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Junpeng Zha, Hongjin Liang, and Xinyu Feng

t′ ∈ dom(TP)

ι ⊢ (TP, t,M)
sw
===⇒ (TP, t′,M)

(sw-step)

ι ⊢ (TP(t),M) −−→+ (TS′,M ′) consistent(TS′,M ′
, ι)

ι ⊢ (TP, t,M)
τ
==⇒ (TP{t ; TS′}, t,M ′)

(τ -step)

ι ⊢ (TP(t),M)
out(v)
−−−−−→ (TS′,M ′)

ι ⊢ (TP, t,M)
out(v)
=====⇒ (TP{t ; TS′}, t,M ′)

(out-step)

Figure 9. Interleaving machine steps.

set and the memory. Note that only non-atomic and relaxed
writes can be promised.

The rsv and ccl events represent the creation and cancel-
lation of a reservation. The reserve step (te = rsv) puts a
special reservation message ⟨x : (f , t]⟩ (see Fig. 8) into the
thread’s promise set and the memory. It allows the thread
to reserve a timestamp interval that it plans to use later and
prevents other threads from using it. When the thread wants
to use its reserved timestamp interval, it takes a cancel step
(te = ccl) to remove the reservation. The τ step represents a
silent thread step with no memory effect (e.g. r := e).

Promise certification. All the promises made by a thread
should be certified through the following consistency check:

consistent(TS,M, ι) iff ∃TS′. ι ⊢ (TS, M̂) −−→∗ (TS′, _) ∧ TS′.P = ∅

It requires that the current thread should be able to fulfill
all its promises (TS′.P = ∅ for the final TS′) if it executes in
isolation, starting form the capped version M̂ of the current
memory M . The capped memory M̂ is constructed from M

in two steps: first we fill all the łgapsž between the time-
stamp intervals of the messages for the same location in
M by inserting reservations in between, and then for every
location x we insert a łcap reservationž ⟨x : (t, t + 1]⟩ in the
memory, where t is the łtož-timestamp of the latest message
on location x.

Machine steps. Execution of the whole program follows
an interleaving semantics. As the (τ -step) rule in Fig. 9 shows,
a machine step may consist of multiple silent thread steps (i.e.
steps without producing the out(v) event, which are steps
that do not execute the print instruction), until it reaches a
consistent configuration (defined above). The overall machine
step is labeled with pe = τ (see Fig. 8 for the definition of
pe), saying that it is not externally observable.

A context switch can be done non-deterministically at any
machine step by resetting the current thread id (the (sw-step)).
An (out-step) executes print and produces an externally ob-
servable out(v) event.

Behaviors. The behaviors of a program are modeled as
a set of observable event traces. As defined in Fig. 8, an ob-
servable event trace B is a finite sequence of the output
event (out(v)) and may end with a termination marker done

(NPProg) P̂ ::= let (π , ι) in f1 | . . . | fn

(SwBit) β ::= ◦ | • (NPWorld) Ŵ ::= (TP, t,M, β)

(NA) na ::= τ | R(na, x,v) | W(na, x,v)

(PRC) prc ::= prm | rsv | ccl

(AT) at ∈ {te | te < (NA ∪ PRC)}

ι ⊢ (TS,M)
te

−−→ (TS′,M ′)

te ∈ NA =⇒ β ′ = • te ∈ AT =⇒ β ′ = ◦

te ∈ {prm, rsv} =⇒ β = β ′ = ◦ te = ccl =⇒ β = β ′

ι ⊢ (TS,M, β)
te
7−−→ (TS′,M ′

, β ′)

ι ⊢ (TP(t),M, β) 7−−→+ (TS′,M ′
, β ′)

consistentNP(TS
′
,M ′
, β ′, ι)

ι ⊢ (TP, t,M, β) :
τ
==⇒ (TP{t ; TS′}, t,M ′

, β ′)

t′ ∈ dom(TP)

ι ⊢ (TP, t,M, ◦) :
sw
===⇒ (TP, t′,M, ◦)

Figure 10. Core rules of our non-preemptive semantics.

or an abortion marker abort. We use P ⊆ P′ to represent
the event-trace refinement, which means that the set of ob-
servable event traces generated by the execution of P is the
subset of one generated by the execution of P′. P ≈ P′ repre-
sents that the executions of P and P′ generate the same set
of observable event traces.

4 Non-Preemptive Semantics

Figure 10 shows our non-preemptive version of the promis-
ing semantics. Its main feature is that we disallow context
switches and promise/reserve steps after non-atomic reads
and writes. Therefore, execution of a block B of statements
consisting of only non-atomic accesses cannot be interrupted
by other threads. However, for the following reasons this
requirement does not make B sequential or łatomicž in the
traditional sense. First, the non-atomic steps in B still follow
the promising semantics, therefore each non-atomic read
may see multiple writes inM , according to the thread’s lo-
cal view. Second, before entering the block B, we can still
make promises corresponding to the non-atomic writes in
B. Context switches between these promise steps and the
execution of B are permitted. These are the keys to make the
non-preemptive semantics equivalent to the interelaving PS.
In detail, we write let (π , ι) in f1 | . . . | fn or P̂ for the

program with the non-preemptive semantics, to distinguish
it from the one with the interleaving semantics. The machine
state Ŵ is defined similarly asW in Fig. 8, but is extended
with a łswitch bitž β to indicate whether a switch step is
allowed (◦) or not (•). We classify the operations into three
groups, NA, PRC and AT. NA operations refer to non-atomic
memory accesses, and operations that have no memory or
synchronization effects. PRC refers to promise (prm), reserve
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TP(t) = (σ ,V , P) nxt(σ ) =W(na, x, _)
m ∈ (M\P) m.var = x V .Trlx(x) < m.to

(TP, t,M) Z=⇒ ww-Race

let (π , ι) in f1 ∥ · · · ∥ fn
init
==⇒W

ι ⊢W ==⇒∗W ′ W ′ Z=⇒ ww-Race

let (π , ι) in f1 ∥ · · · ∥ fn Z=⇒ ww-Race

¬(P Z=⇒ ww-Race)

ww-RF(P)

Figure 11.Write-write race freedom in PS.

(rsv) and cancel (ccl) steps.AT refers to other atomic memory
accesses and synchronization steps.

The first rule in Fig. 10 shows the allowed combination of
the switch bit and the thread step. It reuses the thread step

ι ⊢ (TS,M)
te
−−→ (TS′,M ′) in the promising semantics. The

switch bit turns off if te is a NA step, and turns on if it is
an AT step. The promise and reserve steps are allowed only
when the switch bit is turned on, and they do not change
the switch bit (i.e. β = β ′

= ◦). The cancel steps are allowed
at any places and do not change the switch bit either.

As the second rule of Fig. 10 shows, we lift the new silent
thread steps to a machine step, by requiring that the thread
should reach a consistent configuration, similar to the (τ -step)
of the interleaving semantics in Fig. 9. Here consistentNP is
defined the same as consistent but using the new thread
step instead. Other kinds of thread steps are also lifted to
machine steps in the same way as in Fig. 9 and we omit the
details. Different from the interleaving semantics, here we
only switch to another thread when β = ◦, as shown by the
last rule of Fig. 10.

We prove Thm. 4.1 ( 5○ in Fig. 6), saying that a program in
our non-preemptive semantics generates the same observ-
able behaviors as in the original interleaving PS2.1.

Theorem 4.1 (Semantics Equivalence). ∀π , f1, . . . , fn, ι.

let (π , ι) in f1 | . . . | fn ≈ let (π , ι) in f1 ∥ · · · ∥ fn .

One may question this equivalence and argue that, with-
out interleavings inside a block of non-atomic accesses, the
non-preemptive semantics would disallow the following be-
haviors easily produced by an interleaving semantics:

(1) redundant reads can see different values; and
(2) redundant writes can all be seen by other threads.

Our non-preemptive semantics can produce these behav-
iors because, for (1), by reusing the thread steps of PS2.1,
a read needs not read the łlatestž write; and for (2), all the
writes can be promised before entering the block of non-
atomic accesses, so that other threads can see them.

5 Write-Write Race Freedom

As explained in Sec. 2.4, we assume the source programs are
free of write-write races. We define write-write race freedom
(ww-RF) in PS2.1 in Fig. 11. For a program P,ww-RF(P) holds,

if its execution never reaches a machine stateW ′ that gener-
ates a write-write race. The machine stateW = (TP, t,M)

generates a write-write race (W Z=⇒ ww-Race), if the current
thread t can take a non-atomic write step on some location
x (we use nxt(σ ) to get the next operation of the program
in the following execution) while there exists a message
m ∈ (M\(TP(t).P)) on x that has not been observed by t.
In other words, there is a write on x (represented by m)
concurrently with the non-atomic write by t.
We define ww-NPRF(P̂) similarly, which says that the

execution of P̂ in the non-preemptive semantics will not reach
a machine state generating write-write races. We prove that
ww-NPRF is equivalent to ww-RF in Lm. 5.1 ( 1○ in Fig. 6).

Lemma 5.1 (ww-RF Equivalence). ∀π , f1, . . . , fn , ι.

ww-RF(let (π , ι) in f1 ∥ · · · ∥ fn)

⇐⇒ ww-NPRF(let (π , ι) in f1 | . . . | fn).

To vertically compose verified optimizations, the target
program of an optimization needs to satisfy ww-RF as well,
since it can be the input source of a subsequent optimization.
As such, our verification method (i.e. the simulation in Sec. 6)
should ensure the preservation of ww-RF.

6 Thread-Local Simulation

In this section, we define a thread-local simulation as the for-
mal correctness definition of optimizations. It can be viewed
as a specialization of the standard simulation (see Fig. 2(a))
in the setting of PS2.1, but it achieves both of the two chal-
lenging goals: 1) it is parallel compositional; 2) it preserves
write-write race freedom. For 1), our simulation carries the
invariant parameter I relating the source and target shared
states at switch points (Sec. 6.1). The switch points are deter-
mined by the non-preemptive semantics in Sec. 4. For 2), we
introduce the delayed write set D updated along with the
execution steps inside the simulation (Sec. 6.2). We end this
section with the optimization correctness theorem (Sec. 6.3).

6.1 Invariant Parameter

As explained in Sec. 2.2, the invariant parameter I specifies
the shared states at switch points. It is the key to ensure
horizontal compositionality. We allow it to be instantiated
differently when verifying different optimizations. The type
of I is shown in Fig. 12. Users instantiating I(φ, S, ι) are ex-
pected to specify the application-dependent invariant over
φ and S, with the help of the set ι of atomic variables for
the code being verified. Here φ is the timestamp mapping
explained soon, and the shared state S = (Mt ,Ms ) consists
of the memories (M) at the target and source levels.

Timestamp mapping. To relate the messages in the tar-
get and source memories, we introduce a partial mapping φ
called łtimestamp mappingž whose type is defined at the top
of Fig. 12. φ(x, t) = t ′ maps the łtož-timestamp t at the target
level to the łtož-timestamp t ′ at the source for location x.
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(TMap) φ ∈ (Var × Time)⇀ Time

(Sst) S ≜ (Mt ,Ms ) where Mt ,Ms ∈ Mem

(Inv) I ∈ TMap → Sst → Atms → Prop

TMU ≜ {(x, t) | ⟨x : _@(_, t], _⟩ ∈ M}

φ(M) ≜ {(x, t ′) | ∃t . (x, t) ∈ TMU ∧ φ(x, t) = t ′}

mon(φ) ≜ ∀x, t1, t2. (t1 < t2) ∧ ({(x, t1), (x, t2)} ⊆ dom(φ))

=⇒ φ(x, t1) < φ(x, t2)

wf(I, ι) ≜ I(φ0, (M0,M0), ι)

∧ (∀φ,Mt ,Ms . I(φ, (Mt ,Ms ), ι) =⇒

dom(φ) = TMtU ∧ φ(Mt ) ⊆ TMsU ∧mon(φ))

Figure 12. Timestamp mapping φ and invariant I.

Initially when the thread starts the execution, the time-
stamp mapping is φ0 ≜ {(x, 0) ; 0 | x ∈ Var}, for the
initial memoriesM0 ≜ {⟨x : 0@(0, 0],V⊥⟩ | x ∈ Var}. As the
thread executes, the timestamp mapping φ may be expanded
to relate timestamps for the new writes, but the φ-related
memoriesMt andMs must always satisfy the user-specified
invariant I at switch points.
To see how the invariant I imposes constraints on φ,Mt

andMs , we show a simple example:

Iid(φ, (Mt ,Ms ), ι) ≜ (Mt = Ms )

∧ (dom(φ) = TMtU) ∧ (∀(x, t) ∈ dom(φ). φ(x, t) = t)

Iid requires that the source and target memories be the same,
and consequently φ be an identity timestamp mapping. Here
TMU collects the (x, t) pairs of concrete messages inM (de-
fined in Fig. 12). Despite its simple look, Iid is applicable for
many optimizations, including ConstProp and CSE.

Well-formed I . Since I is provided by verifiers, it must
pass some sanity check (under the atomic variable set ι for
the code being verified), defined as wf(I, ι) in Fig. 12. It has
two requirements. First, I should hold over the initial φ0 and
M0. Second, whenever I(φ, (Mt ,Ms ), ι) holds, each concrete
message inMt has a related concrete message inMs through
φ, andφ is monotonically increasing on timestamps (mon(φ)).
It is easy to check that wf(Iid, ι) holds for the above Iid and
any ι.

Simulation with I . Our thread-local simulation between
the target and source code πt and πs is written as I, ι |= πt ≼
πs , defined in Def. 6.1.

Definition 6.1 (Thread-local upward simulation).
I, ι |= πt ≼ πs iff (1) wf(I, ι); and (2) for any σt and f, if
Init(πt , f) = σt , then there exists σs such that Init(πs , f) = σs
and I, ι |= ((σt ,V⊥, ∅),M0) ≼

◦,∅
φ0

((σs ,V⊥, ∅),M0).

In addition to the sanity check wf(I, ι), Def. 6.1 says, if the
execution of a target thread starts from the function f in πt
in the initial state, the source thread can also start from f in
πs , and the initial thread configurations ((σt ,V⊥, ∅),M0) and
((σs ,V⊥, ∅),M0) have the simulation.

(Index) i ∈ . . . (DlyItem) d ∈ (Var × Time)

(Dlyset) D ∈ DlyItem⇀ Index

D ′
< D ≜ dom(D ′)=dom(D) ∧ ∀d ∈dom(D).D ′(d)<D(d)

te =W(na, x,v) =⇒

∃t . (x, t) ∈ T(M ′ −M) ∪ (TS.P − TS′.P)U
∧ ∃i . D ′

= D ⊎ {(x, t) ; i}

te ,W(na, _, _) =⇒ D ′
= D

((TS,M), te, (TS′,M ′)) ⊢ D ; D ′ (tgt-D)

ι ⊢ (TS,M)
te
−−→ (TS′,M ′)

te =W(na, x,v) =⇒ D ′
= (D\(x, t))

te ,W(na, _, _) =⇒ D ′
= D side condition . . .

ι ⊢ (TS,M,D)
te
−−→→ (TS′,M ′

,D ′)

(src-D)

Figure 13. Delayed write set.

The simulation I, ι |= (TSt ,Mt ) ≼
β ,D
φ (TSs ,Ms ) relates

the target and source’s thread configurations, (TSt ,Mt ) and
(TSs ,Ms ). The parameter φ records the timestamp mapping
at the last switch point, and the switch bit β indicateswhether
the thread can switch at the current point (yes, if β = ◦; and
no, if β = •). The delayed write set D will be explained in
Sec. 6.2 and can be ignored for the moment.
As depicted in Fig. 2(b), I should hold at switch points

(i.e. when β = ◦). The simulation says, whenever I, ι |=

(TSt ,Mt ) ≼
◦,D
φ (TSs ,Ms ), we have I(φ, (Mt ,Ms ), ι) and

∀φ ′,M ′
t
,M ′

s . I(φ
′
, (M ′

t
,M ′

s ), ι) ∧ Rely((Mt ,Ms ), (M
′
t
,M ′

s ), . . .)

=⇒ I, ι |= (TSt ,M
′
t
) ≼◦,D

φ′ (TSs ,M
′
s ).

That is, when switching back from the environment tran-
sition, the simulation relation is preserved as long as I still
holds over the new shared state (M ′

t
,M ′

s ) and timestampmap-
ping φ ′, and the transition satisfies a Rely condition. Unlike
the parameter I, the Rely condition encodes the semantics
specific transitions, e.g. the write messages inMt must also
be in M ′

t
since messages can never be removed from the

memory. Its definition is fixed as part of the simulation. We
do not expand it here for brevity.

6.2 Delayed Write Set

To enforce the preservation of write-write race freedom (i.e.
if the source program is race-free, so is the target; or say, if
the target program is racy, so is the source), our thread-local
simulation requires that all locations written by the target
thread should also be written by the source. That said, we
should also allow the source state to be temporarily łleft
behindž the target. That is, when the target thread does a
write step or fulfills a promise, the source may not perform
the corresponding step at present, but it must eventually
do the step. For this, we introduce the delayed write set
D to record the set of writes which must be caught up by
the source thread later. As defined in Fig. 13, D maps each
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t • •
nas ∗

t′ • •
nat

D, _ D3, _

(a) Non-atomic step

t • •
na ∗ ◦

at

t′ • ◦
at

∅, _ ∅, I

(b) Atomic step

t ◦ ◦
prm

t′ ◦ ◦
prm

∅, I ∅, I

(c) Promise step

t ◦ •
r := xna

•
yna := 2

t′ ◦ •
yna := 2

•
r := xna

∅, Iid {y ; i}, _ ∅, Iid

(d) Example of reordering

Figure 14. Simulation diagrams. (t′ and t represent the target and source threads respectively.)

delayed item d to a well-founded index i , where d is a pair
(x, t) representing a non-atomic write.
More specifically, D plays two roles. First, D records all

the non-atomic writes of the target. As defined in the (tgt-D)

rule in Fig. 13, we write ((TS,M), te, (TS′,M ′)) ⊢ D ; D ′

to compute the new D ′ from the original D for the target

step ι ⊢ (TS,M)
te
−−→ (TS′,M ′). When this target step is a

non-atomic write (i.e. te =W(na, x,v)), we first find out the
corresponding write message (identified by the pair (x, t)),
which must be either a newly added message in the memory
(M ′ −M) or a fulfilled promise in (TS.P − TS′.P). Then (x, t)

is put into D with some index i to get the new D ′.
Second, the well-founded indexes in D are used to ensure

that the source eventually catches up the delayed writes
within finite steps. An index assigned to a write (x, t) should
be decreased for source steps which do not write to x. To for-
mulate this idea, we first extend a source thread step with the

writes remained to catch up, written as ι ⊢ (TS,M,D)
te
−−→→

(TS′,M ′
,D ′). It is defined in the (src-D) rule in Fig. 13. We

compute D ′ by removing from D the write performed by
the source step (see the case for te = W(na, x,v)). There is
also a side condition (elided to simplify the presentation)
ensuring that the source step does not read an originally
unobserved write in D, so it does not make an originally
possible write-write race impossible. Then, in the simulation,
we decrease the indexes of the remaining delayed writes
(written as D ′

< D, defined at the top of Fig. 13).

In summary, the simulation I, ι |= (TSt ,Mt ) ≼
β ,D
φ (TSs ,Ms )

requires that, if the target thread executes a non-atomic step,

i.e. (ι ⊢ (TSt ,Mt )
te
−−→ (TS′t ,M

′
t
)) ∧ te ∈ NA, then there exist

TS′s ,M
′
s , D1, D2 and D3 such that:

• ((TSt ,Mt ), te, (TS
′
t ,M

′
t
)) ⊢ D ; D1;

• ι ⊢ (TSs ,Ms ,D1)
na
−−→→∗ (TS′s ,M

′
s ,D2), D3 < D2;

• I, ι |= (TS′t ,M
′
t
) ≼•,D3

φ (TS′s ,M
′
s ).

Simulation diagrams. Wedraw the simulation diagrams
for the current thread’s steps in Fig. 14(a-c). We have already
discussed the case for non-atomic steps (Fig. 14(a)).

For atomic memory accesses (Fig. 14(b)), which may estab-
lish synchronizations between different threads, our simula-
tion requires that the target and source threads always per-
form the same atomic memory access. Before that the source
is allowed to do some non-atomic steps. This enables us to

verify transformations like (r := 1; xrlx := r ) ; xrlx := 1.
The delay write set should have been empty when taking
the atomic step. After the step, the switch bit is ◦ and the
invariant I needs to be reestablished.

If the target thread takes a promise step for a future write
(Fig. 14(c)), the simulation requires the source thread to also
make a promise for the corresponding future write. As re-
quired by our non-preemptive semantics, the switch bits
must be ◦ before and after the promise steps, so the invari-
ant I needs to be preserved. The cases for reserve and cancel
steps are similar.

Example: instruction reordering. We prove the exam-
ple of Reorder (in Sec. 2.3) satisfies our thread-local simula-
tion. We instantiate the invariant parameter as Iid defined in
Sec. 6.1, and build the simulation in Fig. 14(d). Here we don’t
let the source thread t execute when the target t′ executes
yna := 2. At this point Iid is temporarily broken, but this is
fine since Iid is required to hold at switch points only. We
add y with some index i into the delayed write set to make
sure that the source t will write to y in finite steps. Then,
after t′ executes r := xna, we can let t read the corresponding
message at the source, and execute the write to empty the
delayed write set and reestablish Iid.

6.3 The Optimization Correctness Theorem

Via the proof path in Fig. 6, we can prove that our simulation
ensures the optimization correctness.
We first present Lm. 6.2 ( 3○ in Fig. 6): under the write-

write race freedom assumption, our thread-local simulation
defined in Def. 6.1 is compositional and preserves write-write
race freedom. The whole program simulation P̂t ⩽ P̂s relates
the non-preemptive executions of the whole programs P̂t
and P̂s . Safe means that the execution of the whole program
will not abort.

Lemma 6.2 (Compositionality and ww-RF Preserving).
For any πt , πs , ι, f1, . . . , fn and I, if

1. I, ι |= πt ≼ πs ,
2. Safe(let (πs , ι) in f1 | . . . | fn),
3. ww-NPRF(let (πs , ι) in f1 | . . . | fn),

then let (πt , ι) in f1 | . . . | fn ⩽ let (πs , ι) in f1 | . . . | fn
and ww-NPRF(let (πt , ι) in f1 | . . . | fn).

An optimizer Opt takes the source code πs and the set ι
of atomic variables as input, and returns the target code πt .
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We do not perform optimizations on atomic variables, so the
set of atomic variables in the target must still be ι. Opt is
verified, denoted by Verif(Opt), if we can always establish
the thread-local simulation between any pairs of πt and πs .

Definition 6.3 (Verified optimizer). Verif(Opt) iff

∀πt , πs , ι. Opt(πs , ι) = πt =⇒ ∃I. I, ι |= πt ≼ πs .

An Opt is correct (Def. 6.4), if the refinement holds for all
possible source and target programs. We prove Thm. 6.5 that
a verified optimizer is correct, via the proof path in Fig. 6. De-
tailed proofs are given in the supplementary appendix [25].

Definition 6.4 (Correctness of optimizer).
Correct(Opt) iff, for any πs , πt , f1, . . . , fn and ι, if

1. Opt(πs , ι) = πt ,
2. ww-RF(let (πs , ι) in f1 ∥ · · · ∥ fn),
3. Safe(let (πs , ι) in f1 ∥ · · · ∥ fn),

then let (πt , ι) in f1 ∥ . . . ∥ fn ⊆ let (πs , ι) in f1 ∥ . . . ∥ fn .

Theorem 6.5 (Optimization correctness theorem).

∀Opt. Verif(Opt) =⇒ Correct(Opt).

By Thm. 6.5, we prove that constant propagation, common
subexpression elimination, dead code elimination and loop
invariant code motion are all correct in PS2.1.

Theorem 6.6 (Correct Optimizers).

Correct(ConstProp)∧Correct(CSE)∧Correct(DCE)∧Correct(LICM).

7 Verified Optimizations

As an example, in Sec. 7.1 we briefly explain the verification
of dead code elimination. The detailed proofs and the verifi-
cation of the other optimization algorithms are given in the
supplementary appendix [25]. In Sec. 7.2, we analyze which
optimizations are supported and which are not.

7.1 Dead Code Elimination

Dead code elimination (DCE) eliminates writes to dead vari-
ables. A variable is called dead (or say, not live) at a program
point if its value is not used later in any (sequential) execu-
tion of the code. Following CompCert, we define DCE as:

DCE(πs , ι) ≜ Translaterdce(πs ,Al )

where Al = Lv_Analyzer(πs )

It relies on the results of liveness analysis Lv_Analyzer, which
computes the set Lnl ⊆ (Var ∪ Reg) of dead variables and
registers at every program point. It is a backward analysis:
for each instruction c, it computes L′

nl
before c, when given

Lnl after c. Then, Al = Lv_Analyzer(πs ) collects the results
Lnl for all the program points of πs . The code transformation
Translaterdce applies the single-instruction transformation
TransId on all instructions of πs . Given the analysis result Lnl
after c, TransId (c, Lnl) transforms c to skip (i.e. eliminates
c) if c is a write to a non-atomic location x (or a register r )

yna := 2;

{y}

xrel := 1;

{y}

yna := 4;

{}

Unsafe
;

skip;

xrel := 1;

yna := 4;

g() { int r1, r2;

r1 := xacq;

if(r1 == 1) {

r2 := yna;

print(r2); }

}

Figure 15. DCE is unsafe across release writes.

which is dead after c, i.e. x ∈ Lnl (or r ∈ Lnl); and keeps c
unchanged otherwise.
In PS, it is unsound to perform DCE across release writes.

We forbid it by defining Lv_Analyzer to say that no variable
is dead before a release write. To see how this works, consider
the example in Fig. 15. We annotate the left code (the source)
with the set Lnl of dead variables for each program point in
blue (or in red, for the incorrectLnl). Starting from the bottom,
we assume Lnl is empty at the end of this code. Then, y is
dead before yna := 4. An incorrect liveness analysis would
keep viewing y as dead before the release write (see the red
annotation). Then the transformation would eliminate the
first write to y. The problem is, g() may output the initial
value 0 of y when running in parallel with the target code,
but can only output 2 or 4 with the source due to the release-
acquire synchronization.
Intuitively, the release write can synchronize with the

other thread’s acquire read, so that the variables’ values
before the release write are guaranteed to be seen by the
other thread. Thus these variables cannot be viewed dead.
By contrast, it is sound to perform DCE across relaxed

writes and atomic (acquire/relaxed) reads as well as non-
atomic reads and writes.

Lemma 7.1 (DCE is verified). Verif(DCE).

We prove the lemma by showing that

∀πt , πs , ι. DCE(πs , ι) = πt =⇒ Idce, ι |= πt ≼ πs .

In the proof, we verify Lv_Analyzer and Translaterdce sep-
arately. Lv_Analyzer is verified following the abstract inter-
pretation framework in CompCert. For Translaterdce, we
do induction on the program structure of the source. We
establish the simulation relations for single instructions (the
base cases of the induction), and derive the simulations for
all source code by applying the induction hypothesis and
using the compositionality of the simulation.
To establish the simulation, we instantiate the invariant

parameter I of the simulation as Idce defined below.

Idce(φ, (Mt ,Ms ), ι) ≜ (φ, ι ⊢ Mt ∼ Ms )∧

(∀x < ι, t > 0. ⟨x : _@(_, t], _⟩ ∈ Mt

=⇒ ∃⟨x : _@(f ′, t ′], _⟩ ∈ Ms , tr .

φ(x, t) = t ′ ∧ tr < f ′∧

(∀m ∈ Ms (x).m.to ≤ tr ∨ t ′ ≤ m.from))

Besides the side condition (φ, ι ⊢ Mt ∼ Ms ) (definition omit-
ted for brevity) ensuring that Idce is well-formed (wf(Idce, ι)),
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Target: ◦ • •
skip xna := 2

Source: ◦ • •
xna := 1 xna := 2

◦ • •
skip xna := 2

◦ • •
xna := 1 xna := 2

(a) stutter (b) lockstep

Target: x

Loc.

Timestamp

0 8

Source: x

Loc.

Timestamp

0 5 8

V .Trlx(x)

tc

V .Trlx(x)

t ′c

t

tr f ′ t ′

(c) source and target memories before the executions

Figure 16. Simulations for a small example of DCE.

Idce mainly requires that, for every messagemt representing
a concrete write to a non-atomic location x in Mt , it has
a φ-related messagems in Ms , and there exists an unused
timestamp interval (tr , f ′] just beforems (where f ′ isms ’s
łfromž-timestamp). HereMs (x) denotes a memory consisting
of only the messages with location x inMs .

We need the unused timestamp interval to allow the source
thread to perform dead writes. To see why, consider the
following source and target code for a single thread:

xna := 1; xna := 2;
DCE
; skip; xna := 2; (1)

To build the simulation between them, we have two options,
shown in Fig. 16(a) and (b) respectively. The first one is to
use a stutter simulation in Fig. 16(a), where we let the source
stutter when the target does skip, and let the source execute
till the end for the target’s single write. The stutter simula-
tion works well for this simple example, but will encounter
problems for transformations in the following form:

xna := 1; c1; . . . ; cn ; xna := 2;
DCE
; skip; c1; . . . ; cn ; xna := 2;

When there are many other instructions c1; . . . ; cn between
the dead write xna := 1 and the next write to x, should we let
the source still stutter when the target executes c1; . . . ; cn? If
yes, we would have to remember all the steps that the source
is left behind, which seems complex and impractical.

In our proof of DCE, we choose the alternative, the lockstep
simulation in Fig. 16(b), where the source executes the dead
write when the target does skip. The question is, which
timestamp should we assign to the dead write of the source?
As a concrete example, suppose the memories shown in

Fig. 16(c) are before the source and target threads execute
the code in (1). For x, the source memory contains three

messages while the target contains two (the extra message at
the source represents a dead write eliminated at the target).
We draw a box for each message, where the value inside
the box is the message’s written value to x, and draw a red
dashed arrow to relate a target message to the corresponding
source one. The current views on x (i.e. V .Trlx(x)) of the
source and target threads are at the blue timestamps t ′c and
tc respectively. Now, following the lockstep simulation in
Fig. 16(b), the source thread executes xna := 1 generating a
message 1 while the target executes skip. Shall we insert

1 to the left or right side of the message 8 ?

Our answer is, 1 cannot be inserted to the right of 8 .
To see why, consider the next steps executing xna := 2 by
the source and target threads. Since the target thread view is
at tc , it is possible that the new message 2 generated by the

target thread has a lower timestamp than 8 , thus is inserted

in between 0 and 8 . But for the source, since it executes

xna := 2 after xna := 1, its message 2 should have a greater

timestamp than 1 and be inserted to the right of 1 . If 1

at the source is inserted to the right of 8 , we will see that

2 and 8 are in different orders at the source and target!
This is problematic, because if the thread reads x after the
code of (1), it must obtain 2 at the source since 2 is the
rightmost message, but can obtain either 2 or 8 at the target.
Thus, we insert 1 in between 5 and 8 at the source.

To ensure there indeed exists łspacež to insert 1 , in Idce we
conservatively require the existence of an unused timestamp
interval (tr , f ′] on the left of every write message (e.g. 8 )
of the source that has a counterpart at the target.

7.2 Applicability and Limitations

Compiler transformations in theoretical classifica-

tion. Our simulation can verify all the transformations (on
non-atomic accesses) in the following categories, except 5),
classified by many prior works (e.g. [23]): 1) trace-preserving
transformations, which do not change memory accesses; 2)
elimination of redundant reads/writes; 3) reordering; 4) in-
troduction of redundant reads; 5) introduction of redundant
writes. We don’t support 5) because it is unsound in PS. Also
we want to emphasize that the analyses-based optimization
algorithms verified in our work can do much more than the
transformations in the above categories. For instance, DCE
can eliminate not only redundant writes, but also those that
are found dead in the program analysis; and it can optimize
across specific kinds of atomic accesses.

Optimizations in real-world compilers. CompCert [6]
performs the following dataflow-analyses based optimiza-
tions: ConstProp, CSE, DCE and register allocation. We have
verified that ConstProp, CSE and DCE are correct in PS2.1.
Register allocation is already challenging to verify in sequen-
tial settings and CompCert only does a posteriori validation.
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LLVM roughly performs two classes of dataflow-analyses
based optimizations: redundancy elimination, and register
promotion. Many redundancy elimination optimizations in
LLVM can be viewed as specializations or degenerations
of the four algorithms verified in our work. For example,
LLVM’s łdead store eliminationž only eliminates basic-block
local redundant writes, while DCE we verified can eliminate
dead writes across basic blocks. We haven’t considered either
the inter-procedural analyses based optimizations or the alias-
analysis based register promotion in LLVM.

Limitations of our work and possible future exten-

sions. Mainly, there are two kinds of thread-local optimiza-
tions which are sound in PS2.1 but cannot be verified by
our simulation. The first one is the optimizations on atomic

memory accesses, such as fence elimination. We haven’t con-
sidered them because they are rarely found in mainstream C
compilers such as GCC and LLVM. The second one is the in-
troduction of additional writes on thread-local memory, such
as register allocation & spilling, which allocates thread-local
memory locations for pseudo registers and converts some
operations on pseudo registers to memory accesses. To verify
them, we must extend PS2.1 with thread-local memory.

8 Related Work

Many works proved the correctness of real-world optimiza-
tion algorithms with program analyses in compilers for se-
quential programs [6, 20, 21, 24], but there is not much dis-
cussion about how to prove the correctness of optimizers for
concurrent programs in weak memory models.

Gäher et al. [7] develop Simuliris, a simulation technique
that establishes termination preservation (under a fair sched-
uler) for concurrent program transformations while assum-
ing data race freedom of source programs. Their work is built
on Iris [9], which gives the SC semantics [12] to concurrent
programs, and proves the correctness of transformations
on specific code. By contrast, we consider the weak mem-
ory model PS2.1, and verify the correctness of optimization
algorithms, not just transformations of specific code.
Jiang et al. [8] develop CASCompCert for correct compi-

lation of data-race-free C-like programs. Their source pro-
grams are in the SC semantics, i.e. they do not give weak
semantics to the various atomic primitives in C/C++ con-
currency [1], e.g. release writes and acquire reads. More-
over, they do not support optimizations that may introduce
read-write races, such as LICM we verified. They also forbid
optimizations across synchronizations, while we investigate
the semantics of atomic accesses and show that some opti-
mizations are still safe across proper atomic accesses.

Ševčík et al. [19] develop CompCertTSO, which compiles
ClightTSO programs to the x86-TSO machine. The TSO se-
mantics for the source C programs is very different from (and
stronger than) the standard C/C++11 weak semantics, and
these source programs cannot be compiled to efficient ARM

or Power programs. The proof method in CompCertTSO uses
an overly strong simulation relation, requiring the source
and target to always generate the same memory accesses,
which prevents almost all optimizations onmemory accesses,
including the ones we verified.

For weak memory models of C-like languages formulated
in an axiomatic style (e.g. [1, 3, 4, 11]), where the semantics is
defined in terms of axioms about complete executions, people
have developed tools to validate the code transformations
(e.g. [2, 15, 16]): for each pair of source and target programs,
the validator checks whether the behaviors are the same.
Formally proving the correctness of optimization algorithms
in these models is still an open problem.

Many works [11, 13, 17, 18] prove the correctness of com-

pilation schemes from high-level concurrent programming
languages with weak semantics to mainstream multi-core
architectures, such as x86-TSO, ARM and POWER. These
compilation schemes map each high-level primitive to a se-
quence of machine instructions directly and do not involve
any code optimizations (such as reordering and elimination
of reads/writes). It seems difficult to apply their approaches
to verify optimization passes.

Comparison with PSSim. One closely related work is
the łofficial" simulation (called PSSim below) proposed to-
gether with the promising semantics [10]. We both support
thread-local verification by using invariants to abstract the
environment interference. However, the invariant in PSSim
is fixed (called Ipssim below), while ours can be instantiated
differently in verifying different optimizations. Also our use
of non-preemptive semantics and the assumption of write-
write race freedom give users more freedom to instantiate
the invariant. Consequently, the proof for an optimization
can be greatly simplified. For instance, to verify ConstProp
and CSE, we use Iid as the invariant, which is much stronger
than Ipssim and more convenient to use. For DCE, we use an
invariant weaker than Ipssim, which allows us to establish the
lock-step simulation. With the fixed invariant Ipssim, it is un-
clear whether PSSim is applicable to all these optimizations.

On the other hand, we also have to pay extra prices that are
not needed in PSSim. We prove the non-preemptive seman-
tics is equivalent to PS2.1 (in Thm. 4.1). Also our simulation
needs to be strong enough to ensure (as a meta-property) the
target preserves the write-write race freedom of the source.
For this purpose, we introduce the delayed write set D.
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